A Temperature for Life • 2018 • episode "2/3" From Ice to Fire: The Incredible Science of Temperature

Category: Physics
Download:

Physicist Dr Helen Czerski explores the narrow band of temperature that has led to life on Earth. She reveals how life began in a dramatic place where hot meets cold, and how every single living creature on Earth depends on temperature for its survival. She uncovers the extraordinary natural engineering that animals have evolved to keep their bodies at the right temperature. And she witnesses the remarkable surgery that's using temperature to push the human body to the very brink of life.

From Ice to Fire: The Incredible Science of Temperature • 2017 - 2018 • 3 episodes •

Frozen Solid

In episode one, Helen ventures to the bottom of the temperature scale, revealing how cold has shaped the world around us and why frozen doesn't mean what you might think. She meets the scientists pushing temperature to the very limits of cold, where the normal laws of physics break down and a new world of scientific possibility begins. The extraordinary behaviour of matter at temperatures close to absolute zero is driving the advance of technology, from superconductors to quantum computing.

2018 • Physics

A Temperature for Life

Physicist Dr Helen Czerski explores the narrow band of temperature that has led to life on Earth. She reveals how life began in a dramatic place where hot meets cold, and how every single living creature on Earth depends on temperature for its survival. She uncovers the extraordinary natural engineering that animals have evolved to keep their bodies at the right temperature. And she witnesses the remarkable surgery that's using temperature to push the human body to the very brink of life.

2018 • Physics

Playing with Fire

Dr Helen Czerksi explores the extraordinary science of heat. She reveals how heat is the hidden energy contained within matter, with the power to transform it from one state to another. Our ability to harness this fundamental law of science has led to some of humanity's greatest achievements, from the molten metals that enabled us to make tools, to the great engines of the Industrial Revolution powered by steam, to the searing heat of plasmas that offer almost unlimited power.

2017 • Physics

You might also like

Project Greenglow: The Quest for Gravity Control

The story of an extraordinary scientific adventure - the attempt to control gravity. For centuries, the precise workings of gravity have confounded the greatest scientific minds, and the idea of controlling gravity has been seen as little more than a fanciful dream. Yet in the mid 1990s, UK defence manufacturer BAE Systems began a groundbreaking project code-named Greenglow, which set about turning science fiction into reality. On the other side of the Atlantic, Nasa was simultaneously running its own Breakthrough Propulsion Physics Project. It was concerned with potential space applications of new physics, including concepts like 'faster-than-light travel' and 'warp drives'. Horizon explores science's long-standing obsession with the idea of gravity control. It looks at recent breakthroughs in the search for loopholes in conventional physics and examines how the groundwork carried out by Project Greenglow has helped change our understanding of the universe.

Horizon • 2016 • Physics

Measure for Measure Quantum Physics and Reality

When no one is looking, a particle has near limitless potential: it can be nearly anywhere. But measure it, and the particle snaps to one position. How do subatomic objects shed their quantum weirdness? Experts in the field of physics, including David Z. Albert, Sean Carroll, Sheldon Goldstein, Ruediger Schack, and moderator Brian Greene, discuss the history of quantum mechanics, current theories in the field, and possibilities for the future.

World Science Festival • 2014 • Physics

Einstein's Quantum Riddle

Join scientists as they grab light from across the universe to prove quantum entanglement is real. Einstein called it "spooky action at a distance", but today quantum entanglement is poised to revolutionize technology from computers to cryptography. Physicists have gradually become convinced that the phenomenon two subatomic particles that mirror changes in each other instantaneously over any distance is real. But a few doubts remain. NOVA follows a ground-breaking experiment in the Canary Islands to use quasars at opposite ends of the universe to once and for all settle remaining questions.

NOVA PBS • 2019 • Physics

Is Everything We Know About the Universe Wrong?

There is something very strange happens in space – something that should not be possible. It’s as if large parts of the world are being ravaged by a huge and invisible celestial vacuum. Sasha Kaslinsky, the scientist who discovered the phenomenon, is understandably nervous: “We left very upset and nervous,” he says, “because this is not something we planned to find.”

Physics

That Shrinking Feeling

Hannah is going the other way by asking whether everything could, in fact, be smaller. But going smaller turns out not to be much safer... First, we shrink the Earth to half its size - it starts well with lower gravity enabling us to do incredible acrobatics, but things gradually turn nasty as everyone gets altitude sickness - even at sea level. Then we visit Professor Daniel Lathrop's incredible laboratory, where he has built a model Earth that allows us to investigate the other effects of shrinking the planet to half size. The results aren't good - with a weaker magnetic field we would lose our atmosphere and eventually become a barren, lifeless rock like Mars. In our next thought experiment, we shrink people to find out what life is like if you are just 5mm tall. We find out why small creatures have superpowers that seem to defy the laws of physics, meet Jyoti Amge, the world's smallest woman, and with the help of Dr Diana Van Heemst and thousands of baseball players reveal why short people have longer lives. Lastly, the Sun gets as small as a sun can be. We visit the fusion reactor at the Joint European Torus to find out why stars have to be a minimum size or fusion won't happen. And if our Sun were that small? Plants would turn from green to black, and Earth would probably resemble a giant, frozen eyeball. Which all goes to show that size really does matter.

2/2Size Matters with Hannah Fry • 2018 • Physics

Double Slit Experiment

The double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena.

Physics