Space, time and the nature of reality.
Hope you're finding these documentaries fascinating and eye-opening. It's just me, working hard behind the scenes to bring you this enriching content.
Running and maintaining a website like this takes time and resources. That's why I'm reaching out to you. If you appreciate what I do and would like to support my efforts, would you consider "buying me a coffee"?
BTC: bc1q8ldskxh4x9qnddhcrgcun8rtvddeldm2a07r2v
ETH: 0x5CCAAA1afc5c5D814129d99277dDb5A979672116
With your donation through, you can show your appreciation and help me keep this project going. Every contribution, no matter how small, makes a significant impact. It goes directly towards covering server costs.
Particles come in pairs, which is why there should be an equal amount of matter and antimatter in the universe. Yet, scientists have not been able to detect any in the visible universe. Where is this missing antimatter?
Space is where things happen. Time is when things happen. And sometimes, in order to really look at the universe, you need to take those two concepts and mash them together. In this first lesson of a three-part series on space-time, hilarious hosts Andrew Pontzen and Tom Whyntie go through the basics of space and time individually, and use a flip book to illustrate how we can begin to look at them together.
How Albert Einstein thought he'd found the fatal flaw in quantum theory because it implies that sub-atomic particles can communicate faster than light.
Forget oil, coal and gas - a new set of materials is shaping our world and they're so bizarre they may as well be alien technology. In the first BBC documentary to be filmed entirely on smartphones, materials scientist Prof Mark Miodownik reveals the super elements that underpin our high-tech world. We have become utterly dependent on them, but they are rare and they're already running out. The stuff that makes our smartphones work could be gone in a decade and our ability to feed the world depends mostly on a mineral found in just one country. Mark reveals the magical properties of these extraordinary materials and finds out what we can do to save them.
2017 • Physics
This is an astonishing tale of perseverance and ingenuity that reveals how scientists have battled against the odds for almost a century to detect and decode the neutrino, the smallest and strangest particle of matter in the universe. Inside the world-renowned physics laboratory Fermilab, a team of scientists are constructing an audacious experiment to hunt for a mysterious new 'ghost' neutrino. If they find it, this could transform our understanding of the nature and fabric of our universe. The problem is, these tiny particles are almost impossible to detect. Elsewhere, physicists conduct experiments in some of the most extreme environments on the planet: from deep mine shafts in South Dakota to vast ice fields at the South Pole. In these unlikely places supersized neutrino detectors hope to unlock the universe's deepest secrets. Could neutrinos overturn the most precise theory of particle physics that humans have ever written down? Could they even be a link to a hidden realm of new particles that permeate the cosmos - so called dark matter? Scientists at Fermilab are edging towards the truth.
2021 • Physics
When you think of Archimedes’ Eureka moment, you probably imagine a man in a bathtub, right? As it turns out, there's much more to the story. Armand D'Angour tells the story of Archimedes' biggest assignment -- an enormous floating palace commissioned by a king -- that helped him find Eureka.