PHYSICS • 80 videos

The Pleasure of finding Things out

Richard Feynman was one of the most brilliant theoretical physicists and original thinkers of the 20th century. He rebuilt the theory of quantum electrodynamics, and it was for this work that he won the Nobel Prize in 1965. In 1981, he gave Horizon a candid interview, talking about many things close to his heart.

1981 • HorizonPhysics

Mechanical Marvels: Clockwork Dreams

Professor Simon Schaffer presents the amazing and untold story of automata - extraordinary clockwork machines designed hundreds of years ago to mimic and recreate life. The film brings the past to life in vivid detail as we see how and why these masterpieces were built. Travelling around Europe, Simon uncovers the history of these machines and shows us some of the most spectacular examples, from an entire working automaton city to a small boy who can be programmed to write and even a device that can play chess. All the machines Simon visits show a level of technical sophistication and ambition that still amazes today. As well as the automata, Simon explains in great detail the world in which they were made - the hardship of the workers who built them, their role in global trade and the industrial revolution and the eccentric designers who dreamt them up. Finally, Simon reveals that to us that these long-forgotten marriages of art and engineering are actually the ancestors of many of our most loved modern technologies, from recorded music to the cinema and much of the digital world.

2013 • Physics

Building the Sun: The 250 Million Degree Problem

Scientists investigate the way the Sun builds its power -- through fusion -- hoping to find a way to use fusion as a less dangerous and less radioactive waste-producing path to energy than fission. But there are some major difficulties along the way...

2017 • Physics

Einstein's Big Idea

Over 100 years ago, Albert Einstein grappled with the implications of his revolutionary special theory of relativity and came to a startling conclusion: mass and energy are one, related by the formula E = mc2. In "Einstein's Big Idea," NOVA dramatizes the remarkable story behind this equation. E = mc2 was just one of several extraordinary breakthroughs that Einstein made in 1905, including the completion of his special theory of relativity, his identification of proof that atoms exist, and his explanation of the nature of light, which would win him the Nobel Prize in Physics. Among Einstein's ideas, E = mc2 is by far the most famous. Yet how many people know what it really means? In a thought-provoking and engrossing docudrama, NOVA illuminates this deceptively simple formula by unraveling the story of how it came to be.

2005 • NOVA PBSPhysics

Particle Fever

Documentary which follows six brilliant scientists during the launch of the Large Hadron Collider, marking the start of the biggest and most expensive experiment in the history of the planet. Filmed over seven years, it is an emotionally charged journey with scientists attempting to push the edge of human innovation. For the first time, a documentary gives viewers a front row seat to a significant and inspiring scientific breakthrough as it happens. As they seek to unravel the mysteries of the universe, 10,000 scientists from over 100 countries join forces in pursuit of a single goal - to recreate conditions that existed just moments after the big bang and find the Higgs boson, potentially explaining the origin of all matter. Directed by a physicist-turned-filmmaker and masterfully edited by Walter Murch (The Godfather trilogy), Particle Fever is a celebration of discovery, revealing the human stories behind this epic machine.

2014 • Physics

Let It Snow!

In this extraordinary documentary we are going to witness very different kinds and situations of snowing: from howling blizzards to the gentlest and loveliest of weather events, from huge handkerchiefs quietly falling to the needle-sharp attack of hard, heavy grains. Snow - what is it really? How is it created - naturally and artificially? Thanks to CGI and new camera techniques we can actually see this process for the first time and listen to the incredible, inaudible music of snowfall, of myriads of tiny crystals touching and rolling and settling. Each snowflake is unique and bears more secrets than we could imagine. Did you know that different kinds of music influence the crystallization process and the shape of snowflakes? And have you ever imagined that we would be able to produce artificial snow that melts at 30 degrees Celsius? With this in mind: just let it snow!

2008 • Physics

Why does time pass?

The equations of physics suggest time should be able to go backwards as well as forwards. Experience suggests, though, that it cannot. Why? And is time travel really possible?

2015 • The EconomistPhysics

The Secret Life of Materials

Materials Science is set to define the next century of human history, and it promises to revolutionize every aspect of our lives. This film takes us on a journey where we meet the pioneers of Materials Science and see the extraordinary discoveries that are transforming the world around us.

2015 • Physics

The Big Picture

Award-winning physicist Sean Carroll is known for his keen observations on the relationship between humanity and the laws of nature, and finding where human purpose and meaning fit into a scientific world view.

2016 • Curiosity Retreats: 2016 LecturesPhysics

Our Quantum Future

The quantum mechanics revolution has revolutionized modern technology. Renowned physicist Brian Greene takes us on a journey through the modern electronic age, from transistors to fiber optics, all made possible through quantum mechanics.

2016 • Exploring Quantum History with Brian GreenePhysics

How to Build a Force Field

Every starship needs armor to protect it from asteroids and enemy attack- Dr. Michio Kaku reveals how cutting edge science could be used to create force fields that might one day save our space craft from an alien onslaught.

2009 • Physics of the ImpossiblePhysics

How to Build a Light Saber

A sword made of pure light that can cut through anything, the lightsaber is a truly awesome weapon. But it's not just a science fiction fantasy, Dr Michio Kaku reveals how we could one day build a real working lightsaber.

2009 • Physics of the ImpossiblePhysics

How To Travel Through.Time

Hurtling back in time to visit the dinosaurs is not an impossible fantasy! Dr Michio Kaku draws up blueprints for a working time machine that will let us visit the past and travel back to the future.

2009 • Physics of the ImpossiblePhysics

Inside Cern

With exclusive behind-the-scenes access, Horizon follows the highs and lows of an extraordinary story in particle physics. In June 2015, teams at CERN started running the large hadron collider at the highest energy ever. Rumours quickly emerged that they were on the brink of a huge discovery. A mysterious bump in some data suggested a first glimpse of a brand new particle that could change our understanding of how the universe works. A new particle could hint at extra dimensions and help us understand the very beginning of the universe - but first the team has to find it. Horizon follows the scientists as they hunt for the elusive signals that would prove if there is a new particle or if it is just noise from their machine.

2016 • HorizonPhysics

Stuff: A Horizon Guide to Materials

Engineer Jem Stansfield looks back through the Horizon archives to find out how scientists have come to understand and manipulate the materials that built the modern world. Whether it's uncovering new materials or finding fresh uses for those we've known about for centuries, each breakthrough offers a tantalising glimpse of the holy grail of materials science - a substance that's cheap to produce and has the potential to change our world. Jem explores how a series of extraordinary advances have done just that - from superconductors to the silicon revolution.

2012 • HorizonPhysics

Race for Absolute Zero

This two-part scientific detective tale tells the story of a remarkable group of pioneers who wanted to reach the ultimate extreme: absolute zero, a place so cold that the physical world as we know it doesn't exist, electricity flows without resistance, fluids defy gravity and the speed of light can be reduced to 38 miles per hour. Each film features a strange cast of eccentric characters, including: Clarence Birds Eye; Frederic 'Ice King' Tudor, who founded an empire harvesting ice; and James Dewar, who almost drove himself crazy by trying to liquefy hydrogen. Absolute zero became the Holy Grail of temperature physicists and is considered the gateway to many new technologies, such as nano-construction, neurological networks and quantum computing. The possibilities, it seems, are limitless. Part 2: Race for Absolute Zero Focuses on the fierce rivalry that took place in the laboratories in Britain, Holland, France and Poland as they sought the ultimate extreme of cold. The program will follow the extraordinary discoveries of superconductivity and superfluidity and the attempt to produce a new form of matter that Albert Einstein predicted would exist within a few billionths of degrees above absolute zero.

2007 • Absolute ZeroPhysics

Conquest of Cold

his two-part scientific detective tale tells the story of a remarkable group of pioneers who wanted to reach the ultimate extreme: absolute zero, a place so cold that the physical world as we know it doesn't exist, electricity flows without resistance, fluids defy gravity and the speed of light can be reduced to 38 miles per hour. Each film features a strange cast of eccentric characters, including: Clarence Birds Eye; Frederic 'Ice King' Tudor, who founded an empire harvesting ice; and James Dewar, who almost drove himself crazy by trying to liquefy hydrogen. Absolute zero became the Holy Grail of temperature physicists and is considered the gateway to many new technologies, such as nano-construction, neurological networks and quantum computing. The possibilities, it seems, are limitless. Part 1: Conquest of Cold Chronicles the major discoveries leading towards the mastery of cold, beginning with King James I's court magician, Cornelius Drebbel, who managed to air condition the largest interior space in the British Isles in 1620. Other stories will include the first "natural philosopher," Robert Boyle, a founder of the Royal Society in Great Britain; the Grand Duke Ferdinand II de Medici's involvement in the creation of the first thermometer; the establishment of the laws of thermodynamics by three young scientists, Sadi Carnot, James Joule and William Thomson; and Michael Faraday's critical achievement in liquefying several other gases which set the stage for the commercial application of cold to refrigeration and air conditioning.

2007 • Absolute ZeroPhysics

Project Greenglow: The Quest for Gravity Control

The story of an extraordinary scientific adventure - the attempt to control gravity. For centuries, the precise workings of gravity have confounded the greatest scientific minds, and the idea of controlling gravity has been seen as little more than a fanciful dream. Yet in the mid 1990s, UK defence manufacturer BAE Systems began a groundbreaking project code-named Greenglow, which set about turning science fiction into reality. On the other side of the Atlantic, Nasa was simultaneously running its own Breakthrough Propulsion Physics Project. It was concerned with potential space applications of new physics, including concepts like 'faster-than-light travel' and 'warp drives'. Horizon explores science's long-standing obsession with the idea of gravity control. It looks at recent breakthroughs in the search for loopholes in conventional physics and examines how the groundwork carried out by Project Greenglow has helped change our understanding of the universe.

2016 • HorizonPhysics

James Clerk Maxwell: The Man Who Changed the World

Professor Iain Stewart reveals the story behind the Scottish physicist who was Einstein's hero; James Clerk Maxwell. Maxwell's discoveries not only inspired Einstein, but they helped shape our modern world - allowing the development of radio, TV, mobile phones and much more. Despite this, he is largely unknown in his native land of Scotland. On the 150th anniversary of Maxwell's great equations, scientist Iain Stewart sets out to change that, and to celebrate the life, work and legacy of the man dubbed 'Scotland's Forgotten Einstein'.

2015 • Physics

What is Something?

What is something? On the most fundamental level thinkable, what are things? Why are things? And why do things behave the way they do?

2015 • In a NutshellPhysics

Inside Einstein's Mind

On November 25th, 1915, Einstein published his greatest work: general relativity. The theory transformed our understanding of nature’s laws and the entire history of the cosmos, reaching back to the origin of time itself. Now, in celebration of the 100th anniversary of Einstein’s achievement, NOVA tells the inside story of Einstein’s masterpiece. The story begins with the intuitive thought experiments that set Einstein off on his quest and traces the revolution in cosmology that is still playing out in today’s labs and observatories. Discover the simple but powerful ideas at the heart of relativity, illuminating the theory—and Einstein’s brilliance—as never before. From the first spark of an idea to the discovery of the expanding universe, the Big Bang, black holes, and dark energy, NOVA uncovers the inspired insights and brilliant breakthroughs of “the perfect theory.”

2015 • NOVA PBSPhysics

Beyond the Rainbow

Helen Czerski ventures beyond the visible spectrum in the final (and best) episode in this vibrant little series, showing how electromagnetic radiation is so much broader than the narrow slice of reality we see with our eyes. Before delving into the details of UV, infrared and x-rays, Dr Czerski explores colour subjectivity by trying on a dress that recently divided the internet — to some it appeared blue and black, to others white and gold. It's a perfect fit. It's also a neat analogy of how people can have opposing views but both swear blind that their perspective is correct. The series ends with some amazing imaging techniques that show our bodies in a whole new light.

2015 • Colour: The Spectrum of SciencePhysics

Colours of Life

Early Earth was a canvas for the vast new palette of the colours of life, with the diversity of human skin tones telling the story of how humanity spread and ultimately conquered the planet. Dr Helen Czerski explores the true masters of colour - which are often the smallest and most elusive - travelling to the mountains of Tennessee to witness the colourful mating display of fireflies, and revealing the marine creatures that can change the colour of their skin in order to hide from the world.

2015 • Colour: The Spectrum of SciencePhysics

Colours Of Earth

In the first episode, Helen seeks out the colours that turned planet Earth multicoloured. To investigate the essence of sunlight Helen travels to California to visit the largest solar telescope in the world. She discovers how the most vivid blue is formed from sulfur atoms deep within the Earth's crust and why the presence of red ochre is a key sign of life. In gold, she discovers why this most precious of metals shouldn't even exist on the surface of the planet and in white, Helen travels to one of the hottest places on Earth to explore the role salt and water played in shaping planet Earth.

2015 • Colour: The Spectrum of SciencePhysics

How Small is an Atom?

Atoms are very weird. Wrapping your head around exactly how weird, is close to impossible – how can you describe something that is SO removed from humans experience? But then again, they kind of make up everything, so let us try anyways.

2015 • In a NutshellPhysics

What Is Light?

We are so used to some things that we stopped wondering about them. Like light. What is light? Some kind of wavy thing, right? Kind of.

2015 • In a NutshellPhysics

Making Stuff Faster

Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff: Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records.

2014 • NOVA PBSPhysics

For the Love of Physics (Walter Lewin's Last Lecture)

On May 16, 2011, Professor of Physics Emeritus Walter Lewin returned to MIT lecture hall 26-100 for a physics talk and book signing, complete with some of his most famous physics demonstrations to celebrate the publication of his new book For The Love Of Physics: From the End of the Rainbow to the Edge of Time - A Journey Through the Wonders of Physics, written with Warren Goldstein.

2014 • Physics

Big Bang Machine

On July 4, 2012, scientists at the giant atom smashing facility at CERN announced the discovery of a subatomic particle that seems like a tantalizingly close match to the elusive Higgs Boson, thought to be responsible for giving all the stuff in the universe its mass. Since it was first proposed nearly fifty years ago, the Higgs has been the holy grail of particle physicists: in finding it they validate the “standard model” that underlies all of modern physics and open the door to new discoveries when CERN’s giant collider switches on at higher power in 2015.

2015 • NOVA PBSPhysics

3 Reasons Why Nuclear Energy Is Awesome!

Nuclear energy might have a lot of unused potential. Not only is it one of the best mid term solutions for global warming bit despite what gut feeling tells us, it has saved millions of lives. By investing more into better technologies we might be able to make nuclear energy finally save and clean forever.

Nuclear Energy ExplainedPhysics

3 Reasons Why Nuclear Energy Is Terrible!

Nuclear energy might be a failed experiment. In over sixty years the technology has not only failed to keep its promise of cheap, clean and safe energy, it also caused major catastrophes and enabled more nuclear weapons while the nuclear waste problem is still not solved.

Nuclear Energy ExplainedPhysics

How does it work?

Nuclear Energy is a controversial subject. The pro- and anti-nuclear lobbies fight furiously, and it's difficult to decide who is right. So we're trying to clear up the issue - in this video we discuss how we got to where we are today, as the basis for discussion.

Nuclear Energy ExplainedPhysics

Great Scientists in Their Own Words

Film telling the story of the greatest physicists of the 20th century and the discoveries they made, told in their own words. Men and women who transformed our understanding of the universe, from unlocking the secrets of the atom to solving the mysteries of the cosmos.

Secrets of the UniversePhysics

Are Space and Time An Illusion?

Space, time and the nature of reality.

Physics

There's No Such Thing As Cold

You've felt cold before. Sometimes it's cold outside. But what if I told you that "cold" isn't real? There's no substance or quantity called "cold" in science. We can't measure the amount of "cold" in something. Instead it's about what's NOT there.

It's Okay To Be SmartPhysics

Dancing in the Dark: The End of Physics?

Scientists genuinely don't know what most of our universe is made of. The atoms we're made from only make up four per cent. The rest is dark matter and dark energy (for 'dark', read 'don't know'). The Large Hadron Collider at CERN has been upgraded. When it's switched on in March 2015, its collisions will have twice the energy they did before. The hope is that scientists will discover the identity of dark matter in the debris. The stakes are high - because if dark matter fails to show itself, it might mean that physics itself needs a rethink.

HorizonPhysics

The real story behind Archimedes’ Eureka!

When you think of Archimedes’ Eureka moment, you probably imagine a man in a bathtub, right? As it turns out, there's much more to the story. Armand D'Angour tells the story of Archimedes' biggest assignment -- an enormous floating palace commissioned by a king -- that helped him find Eureka.

TED-EdPhysics

What Happened to Antimatter?

Particles come in pairs, which is why there should be an equal amount of matter and antimatter in the universe. Yet, scientists have not been able to detect any in the visible universe. Where is this missing antimatter?

TED-EdPhysics

Aftershock: The Hunt for Gravitational Waves

Horizon travels to the South Pole to tell the inside story of the greatest scientific quest of our time. In March 2014, a team of astronomers stunned the scientific world when they announced that their BICEP2 telescope at the South Pole had possibly detected a signal of “gravitational waves” from the early universe. This is the inside story of the hunt for gravitational waves from the beginning of time.

HorizonPhysics

The Illusion of Reality

How studying the atom forced us to rethink the nature of reality itself.

AtomPhysics

The Key to the Cosmos

Jim Al-Khalili shows how investigation into the atom unravelled the mystery of creation.

AtomPhysics

The Clash of the Titans

The story of the groundbreaking scientific discovery that everything is made from atoms.

AtomPhysics

Einstein's Equation of Life and Death

In the summer of 1939 Albert Einstein was on holiday in a small resort town on the tip of Long Island. His peaceful summer, however, was about to be shattered by a visit from an old friend and colleague from his years in Berlin. The visitor was the physicist Leo Szilard. He had come to tell Einstein that he feared the Nazis could soon be in possession of a terrible new weapon and that something had to be done.

Physics

The fundamentals of space-time (Part 2)

Light always travels at a speed of 299,792,458 meters per second. But if you're in motion too, you're going to perceive it as traveling even faster -- which isn't possible! In this second installment of a three-part series on space-time, CERN scientists Andrew Pontzen and Tom Whyntie use a space-time diagram to analyze the sometimes confounding motion of light.

TED-EdPhysics

The fundamentals of space-time (Part 1)

Space is where things happen. Time is when things happen. And sometimes, in order to really look at the universe, you need to take those two concepts and mash them together. In this first lesson of a three-part series on space-time, hilarious hosts Andrew Pontzen and Tom Whyntie go through the basics of space and time individually, and use a flip book to illustrate how we can begin to look at them together.

The fundamentals of space-timePhysics

Is Everything We Know About the Universe Wrong?

There is something very strange happens in space – something that should not be possible. It’s as if large parts of the world are being ravaged by a huge and invisible celestial vacuum. Sasha Kaslinsky, the scientist who discovered the phenomenon, is understandably nervous: “We left very upset and nervous,” he says, “because this is not something we planned to find.”

Physics

What on Earth is Wrong with Gravity

Particle physicist Dr Brian Cox wants to know why the Universe is built the way it is. He believes the answers lie in the force of gravity. But Newton thought gravity was powered by God, and even Einstein failed to completely solve it. Heading out with his film crew on a road trip across the USA, Brian fires lasers at the moon in Texas, goes mad in the desert in Arizona, encounters the bending of space and time at a maximum security military base, tries to detect ripples in our reality in the swamps of Louisiana and searches for hidden dimensions just outside Chicago.

Physics

Heat, Light and Electricity

How we came to measure and harness the power of heat, light and electricity.

2013 • Precision: The Measure of All ThingsPhysics

Isaac Newton - The Last Magician

Isaac Newton - brilliant rational mathematician or master of the occult? This innovative biography reveals Newton as both a hermit and a tyrant, a heretic and an alchemist. Magical images mix with actors and experts to bring alive Britain's greatest scientific genius in his own words.

Physics

Revelations and Revolutions

How we finally came to understand the science of electricity.

Shock and Awe: The Story of ElectricityPhysics

The Illusion of Time

Time. We waste it, save it, kill it, make it. The world runs on it. Yet ask physicists what time actually is, and the answer might shock you: They have no idea. Even more surprising, the deep sense we have of time passing from present to past may be nothing more than an illusion. How can our understanding of something so familiar be so wrong?

2010 • The Fabric of the CosmosPhysics

Quantum Leap

Join Brian Greene on a wild ride into the weird realm of quantum physics, which governs the universe on the tiniest of scales. Greene brings quantum mechanics to life in a nightclub like no other, where objects pop in and out of existence, and things over here can affect others over there, instantaneously and without anything crossing the space between them.

2010 • The Fabric of the CosmosPhysics

Is There a Shadow Universe?

It appears we live in a universe filled with light. But scientists are now certain there is far more matter in the dark portions of our universe.

Through the WormholePhysics

Is Gravity an Illusion

We feel it every moment of our lives but for physicists, gravity is the longest running unsolved mystery of the universe. Why do all objects that have mass pull on one another? Cutting-edge theories are proposing unexpected answers.

Through the WormholePhysics

When Did Time Begin

We float along the river of time. But does that river have a source? Where did time come from? Some believe time and space are one thing, and the Big Bang started the cosmic clock. Others believe the universe existed for almost half a million "years" before light could move and time began. Still others say time is older than our universe. But what if time itself is an illusion? Incredible new experiments may hold the answer. One groundbreaking experiment gives us the power to punch holes in time…and another may create a machine that operates outside time’s boundaries!

Through the WormholePhysics

The 2,400-year search for the atom

How do we know what matter is made of? The quest for the atom has been a long one, beginning 2,400 years ago with the work of a Greek philosopher and later continued by a Quaker and a few Nobel Prize-winning scientists. Theresa Doud details the history of atomic theory.?

TED-EdPhysics

Einstein's Nightmare

How Albert Einstein thought he'd found the fatal flaw in quantum theory because it implies that sub-atomic particles can communicate faster than light.

The Secrets of Quantum PhysicsPhysics

How Small is the Universe?

Horizon plunges down the biggest rabbit-hole in history in search of the smallest thing in the Universe. It is a journey where things don't just become smaller but also a whole lot weirder. Scientists hope to catch a glimpse of miniature black holes, multiple dimensions and even parallel Universes.

HorizonPhysics

What can Schrödinger's cat teach us about quantum mechanics?

The classical physics that we encounter in our everyday, macroscopic world is very different from the quantum physics that governs systems on a much smaller scale (like atoms).

TED-EdPhysics

Double Slit Experiment

The double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena.

Physics

What is the Heisenberg Uncertainty Principle?

The Heisenberg Uncertainty Principle states that you can never simultaneously know the exact position and the exact speed of an object.

TED-EdPhysics

Einstein's brilliant mistake: Entangled states

When you think about Einstein and physics, E=mc^2 is probably the first thing that comes to mind. But one of his greatest contributions to the field actually came in the form of an odd philosophical footnote in a 1935 paper he co-wrote -- which ended up being wrong.

TED-EdPhysics

Particles and waves: The central mystery of quantum mechanics

One of the most amazing facts in physics is that everything in the universe, from light to electrons to atoms, behaves like both a particle and a wave at the same time. But how did physicists arrive at this mind-boggling conclusion?

TED-EdPhysics

Schrödinger's cat: A thought experiment in quantum mechanics

Austrian physicist Erwin Schrödinger, one of the founders of quantum mechanics, posed this famous question: If you put a cat in a sealed box with a device that has a 50% chance of killing the cat in the next hour, what will be the state of the cat when that time is up?

TED-EdPhysics

Off the Scale

Richard Hammond explores the astonishing miniature universe all around us.

Richard Hammond's Invisible WorldsPhysics

Speed Limits

Using high-speed cameras, Richard reveals the world hidden in the time it takes to blink.

Richard Hammond's Invisible WorldsPhysics

The Higgs Field, explained

One of the most significant scientific discoveries of the early 21st century is surely the Higgs boson, but the boson and the Higgs Field that allows for that magic particle are extremely difficult to grasp. Don Lincoln outlines an analogy (originally conceived by David Miller) that all of us can appreciate, starring a large dinner party, a raucous group of physicists, and Peter Higgs himself.

TED-EdPhysics

Why Isn't "Zero G" the Same as "Zero Gravity"?

This Quick Question explains the difference between gravity and g-force, and how you can experience zero-g in space even when it’s not zero gravity!

Physics

The Structure of Earth

…or why we live on an onion made of magma.

Physics

The Story of Everything

In two mind-blowing hours, Hawking reveals the wonders of the cosmos to a new generation.

1997 • Stephen Hawking's UniversePhysics

What is Energy?

What is Energy? The short answer is EVERYTHING. But what does that mean? Let SciShow explain.

Physics

Just how small is an atom?

Just how small are atoms? And what's inside them? The answers turn out to be astounding, even for those who think they know. This fast-paced animation uses spectacular metaphors (imagine a blueberry the size of a football stadium!) to give a visceral sense of the building blocks that make our world.

Physics

Mass and Moles

Deep underground in a vault beneath Paris lives the most important lump of metal in the world - Le Grand K. Created in the 19th century, it's the world's master kilogramme, the weight on which every other weight is based. But there is a problem with Le Grand K - it is losing weight. Professor Marcus du Sautoy explores the history of this strange object and the astonishing modern day race to replace it.

2013 • Precision: The Measure of All ThingsPhysics

Time and Distance

Professor Marcus du Sautoy tells the story of the metre and the second - how an astonishing journey across revolutionary France gave birth to the metre, and how scientists today are continuing to redefine the measurement of time and length, with extraordinary results.

2013 • Precision: The Measure of All ThingsPhysics

100 Greatest Discoveries - Physics

The 100 greatest discoveries in Physics!

Physics

How simple ideas lead to scientific discoveries

Adam Savage walks through two spectacular examples of profound scientific discoveries that came from simple, creative methods anyone could have followed -- Eratosthenes' calculation of the Earth's circumference around 200 BC and Hippolyte Fizeau's measurement of the speed of light in 1849.

2012 • Physics

How do we measure distance in space?

When we look at the sky, we have a flat, two-dimensional view. So how do astronomers figure the distances of stars and galaxies from Earth? Yuan-Sen Ting shows us how trigonometric parallaxes, standard candles and more help us determine the distance of objects several billion light years away from Earth.

2014 • TED-EdPhysics

What is love

People ask Google everything under the sun. One of the most commonly searched questions in the world is “What Is Love?” Allow us at SciShow to explain.

2014 • Physics

Inside the Milky Way

Explore our galaxy, the Milky Way

2010 • Physics