Zach charts a journey to determine whether time travel is possible. He meets a man who claims to have traveled back in time due to a secret government program and a group of people living in Liverpool known as “time slippers.” Zach then makes an visit to the CERN headquarters in Geneva, where he attempts to understand the origins of the universe and the dimension of time. Equipped with this new knowledge, Zach tests his own perception of time with an elaborate skydiving experiment to see if he can slow down time itself.
Hope you're finding these documentaries fascinating and eye-opening. It's just me, working hard behind the scenes to bring you this enriching content.
Running and maintaining a website like this takes time and resources. That's why I'm reaching out to you. If you appreciate what I do and would like to support my efforts, would you consider "buying me a coffee"?
BTC: bc1q8ldskxh4x9qnddhcrgcun8rtvddeldm2a07r2v
ETH: 0x5CCAAA1afc5c5D814129d99277dDb5A979672116
With your donation through , you can show your appreciation and help me keep this project going. Every contribution, no matter how small, makes a significant impact. It goes directly towards covering server costs.
James May rapidly and easily explains all you need to know about speed.
S2E4 • James May's Things You Need to Know • 2012 • Physics
Where Am I? Is a new documentary about the skills we use to find our way around. Whether you are an Inuit hunter, a foraging insect, or just someone out for a stroll, your brain is performing one of its most fundamental services – it’s navigating. Why are some of us good at finding our way, while others are not? Good navigators are able to use both memory and imagination…remembering where they have been, and imagining where they’re going. Some researchers believe we build a cognitive or mental map when we navigate, a kind of bird’s eye view of our surroundings, a view that can be rotated and examined in our mind. There has been about sixty years of argument amongst scientists about whether humans and other mammals actually form these cognitive maps or not. The advent of GPS or Global Positioning Systems has changed the discussion about navigation. GPS triggers a simpler, more automatic navigational technique that does not involve building a mental map. With GPS, we simply respond to directions and may not truly understand where we are.
S53E09 • The Nature of Things • 2013 • Physics
Horizon plunges down the biggest rabbit-hole in history in search of the smallest thing in the Universe. It is a journey where things don't just become smaller but also a whole lot weirder. Scientists hope to catch a glimpse of miniature black holes, multiple dimensions and even parallel Universes.
Richard Feynman was one of the most brilliant theoretical physicists and original thinkers of the 20th century. He rebuilt the theory of quantum electrodynamics, and it was for this work that he won the Nobel Prize in 1965. In 1981, he gave Horizon a candid interview, talking about many things close to his heart.
Exploring the universe on a ship that can boldly go where no man has gone before isn't just a sci fi dream. Dr Michio Kaku reveals how we really could one day build a warp drive and set out on our own star trek.
S1E1 • Physics of the Impossible • 2009 • Physics
At the Palace of Westminster, Helen teams up with scientists from the University of Leicester to carry out state-of-the-art measurements using lasers to reveal how the most famous bell in the world - Big Ben - vibrates to create pressure waves in the air at particular frequencies. This is how Big Ben produces its distinct sound. It's the first time that these laser measurements have been done on Big Ben. At the summit of Stromboli, one of Europe's most active volcanoes, Helen and volcanologist Dr Jeffrey Johnson use a special microphone to record the extraordinary deep tone produced by the volcano as it explodes. Finally, at the University of Cambridge's Institute of Astronomy, Helen meets a scientist who has discovered evidence of sound waves in space, created by a giant black hole. These sounds are one million billion times lower than the limit of human hearing
S1E1 • Sound Waves: The Symphony of Physics • 2017 • Physics