Let It Snow! • 2008

Category: Physics
Download:

In this extraordinary documentary we are going to witness very different kinds and situations of snowing: from howling blizzards to the gentlest and loveliest of weather events, from huge handkerchiefs quietly falling to the needle-sharp attack of hard, heavy grains. Snow - what is it really? How is it created - naturally and artificially? Thanks to CGI and new camera techniques we can actually see this process for the first time and listen to the incredible, inaudible music of snowfall, of myriads of tiny crystals touching and rolling and settling. Each snowflake is unique and bears more secrets than we could imagine. Did you know that different kinds of music influence the crystallization process and the shape of snowflakes? And have you ever imagined that we would be able to produce artificial snow that melts at 30 degrees Celsius? With this in mind: just let it snow!

You might also like

James Clerk Maxwell: The Man Who Changed the World

Professor Iain Stewart reveals the story behind the Scottish physicist who was Einstein's hero; James Clerk Maxwell. Maxwell's discoveries not only inspired Einstein, but they helped shape our modern world - allowing the development of radio, TV, mobile phones and much more. Despite this, he is largely unknown in his native land of Scotland. On the 150th anniversary of Maxwell's great equations, scientist Iain Stewart sets out to change that, and to celebrate the life, work and legacy of the man dubbed 'Scotland's Forgotten Einstein'.

2015 • Physics

How To Explore The Universe

Exploring the universe on a ship that can boldly go where no man has gone before isn't just a sci fi dream. Dr Michio Kaku reveals how we really could one day build a warp drive and set out on our own star trek.

S1E1Physics of the Impossible • 2009 • Physics

Mechanical Marvels: Clockwork Dreams

Professor Simon Schaffer presents the amazing and untold story of automata - extraordinary clockwork machines designed hundreds of years ago to mimic and recreate life. The film brings the past to life in vivid detail as we see how and why these masterpieces were built. Travelling around Europe, Simon uncovers the history of these machines and shows us some of the most spectacular examples, from an entire working automaton city to a small boy who can be programmed to write and even a device that can play chess. All the machines Simon visits show a level of technical sophistication and ambition that still amazes today. As well as the automata, Simon explains in great detail the world in which they were made - the hardship of the workers who built them, their role in global trade and the industrial revolution and the eccentric designers who dreamt them up. Finally, Simon reveals that to us that these long-forgotten marriages of art and engineering are actually the ancestors of many of our most loved modern technologies, from recorded music to the cinema and much of the digital world.

2013 • Physics

How do we measure distance in space?

When we look at the sky, we have a flat, two-dimensional view. So how do astronomers figure the distances of stars and galaxies from Earth? Yuan-Sen Ting shows us how trigonometric parallaxes, standard candles and more help us determine the distance of objects several billion light years away from Earth.

TED-Ed • 2014 • Physics

Einstein's brilliant mistake: Entangled states

When you think about Einstein and physics, E=mc^2 is probably the first thing that comes to mind. But one of his greatest contributions to the field actually came in the form of an odd philosophical footnote in a 1935 paper he co-wrote -- which ended up being wrong.

TED-EdPhysics

The fundamentals of space-time (Part 2)

Light always travels at a speed of 299,792,458 meters per second. But if you're in motion too, you're going to perceive it as traveling even faster -- which isn't possible! In this second installment of a three-part series on space-time, CERN scientists Andrew Pontzen and Tom Whyntie use a space-time diagram to analyze the sometimes confounding motion of light.

TED-EdPhysics