Einstein and Hawking: Unlocking the Universe • 2019

Category: Physics

Albert Einstein and Stephen Hawking were revolutionary thinkers who changed everything we know about our universe, and using the latest discoveries, experts explore the connections between these two great minds.

You might also like

Project Greenglow: The Quest for Gravity Control

The story of an extraordinary scientific adventure - the attempt to control gravity. For centuries, the precise workings of gravity have confounded the greatest scientific minds, and the idea of controlling gravity has been seen as little more than a fanciful dream. Yet in the mid 1990s, UK defence manufacturer BAE Systems began a groundbreaking project code-named Greenglow, which set about turning science fiction into reality. On the other side of the Atlantic, Nasa was simultaneously running its own Breakthrough Propulsion Physics Project. It was concerned with potential space applications of new physics, including concepts like 'faster-than-light travel' and 'warp drives'. Horizon explores science's long-standing obsession with the idea of gravity control. It looks at recent breakthroughs in the search for loopholes in conventional physics and examines how the groundwork carried out by Project Greenglow has helped change our understanding of the universe.

Horizon • 2016 • Physics

Inside Cern

With exclusive behind-the-scenes access, Horizon follows the highs and lows of an extraordinary story in particle physics. In June 2015, teams at CERN started running the large hadron collider at the highest energy ever. Rumours quickly emerged that they were on the brink of a huge discovery. A mysterious bump in some data suggested a first glimpse of a brand new particle that could change our understanding of how the universe works. A new particle could hint at extra dimensions and help us understand the very beginning of the universe - but first the team has to find it. Horizon follows the scientists as they hunt for the elusive signals that would prove if there is a new particle or if it is just noise from their machine.

Horizon • 2016 • Physics

3 Reasons Why Nuclear Energy Is Terrible!

Nuclear energy might be a failed experiment. In over sixty years the technology has not only failed to keep its promise of cheap, clean and safe energy, it also caused major catastrophes and enabled more nuclear weapons while the nuclear waste problem is still not solved.

3/3Nuclear Energy ExplainedPhysics

What Is Light?

We are so used to some things that we stopped wondering about them. Like light. What is light? Some kind of wavy thing, right? Kind of.

In a Nutshell • 2015 • Physics

What on Earth is Wrong with Gravity

Particle physicist Dr Brian Cox wants to know why the Universe is built the way it is. He believes the answers lie in the force of gravity. But Newton thought gravity was powered by God, and even Einstein failed to completely solve it. Heading out with his film crew on a road trip across the USA, Brian fires lasers at the moon in Texas, goes mad in the desert in Arizona, encounters the bending of space and time at a maximum security military base, tries to detect ripples in our reality in the swamps of Louisiana and searches for hidden dimensions just outside Chicago.


Making Sound

At the Palace of Westminster, Helen teams up with scientists from the University of Leicester to carry out state-of-the-art measurements using lasers to reveal how the most famous bell in the world - Big Ben - vibrates to create pressure waves in the air at particular frequencies. This is how Big Ben produces its distinct sound. It's the first time that these laser measurements have been done on Big Ben. At the summit of Stromboli, one of Europe's most active volcanoes, Helen and volcanologist Dr Jeffrey Johnson use a special microphone to record the extraordinary deep tone produced by the volcano as it explodes. Finally, at the University of Cambridge's Institute of Astronomy, Helen meets a scientist who has discovered evidence of sound waves in space, created by a giant black hole. These sounds are one million billion times lower than the limit of human hearing

1/2Sound Waves: The Symphony of Physics • 2017 • Physics