Just how small is an atom?

Category: Physics | Download:

Just how small are atoms? And what's inside them? The answers turn out to be astounding, even for those who think they know. This fast-paced animation uses spectacular metaphors (imagine a blueberry the size of a football stadium!) to give a visceral sense of the building blocks that make our world.

Make a donation

Buy a brother a hot coffee? Or a cold beer?

Hope you're finding these documentaries fascinating and eye-opening. It's just me, working hard behind the scenes to bring you this enriching content.

Running and maintaining a website like this takes time and resources. That's why I'm reaching out to you. If you appreciate what I do and would like to support my efforts, would you consider "buying me a coffee"?

Donation addresses

buymeacoffee.com

patreon.com

BTC: bc1q8ldskxh4x9qnddhcrgcun8rtvddeldm2a07r2v

ETH: 0x5CCAAA1afc5c5D814129d99277dDb5A979672116

With your donation through, you can show your appreciation and help me keep this project going. Every contribution, no matter how small, makes a significant impact. It goes directly towards covering server costs.

You might also like

Light Falls: Space, Time, and an Obsession of Einstein

Take a theatrical journey with physicist Brian Greene to uncover how Albert Einstein developed his theory of relativity. In this vivid play, science is illuminated on stage and screen through innovative projections and an original score.

2019 • Physics

Einstein's Big Idea

Over 100 years ago, Albert Einstein grappled with the implications of his revolutionary special theory of relativity and came to a startling conclusion: mass and energy are one, related by the formula E = mc2. In "Einstein's Big Idea," NOVA dramatizes the remarkable story behind this equation. E = mc2 was just one of several extraordinary breakthroughs that Einstein made in 1905, including the completion of his special theory of relativity, his identification of proof that atoms exist, and his explanation of the nature of light, which would win him the Nobel Prize in Physics. Among Einstein's ideas, E = mc2 is by far the most famous. Yet how many people know what it really means? In a thought-provoking and engrossing docudrama, NOVA illuminates this deceptively simple formula by unraveling the story of how it came to be.

NOVA PBS • 2005 • Physics

The Jet Race

From the first gas turbine to tomorrow's hypersonic jet engines, see the evolution of the machine that is changing the world.

4/4Survival in the Skies • 2019 • Physics

How to Build a Time Machine

Time travel is not forbidden by the laws of nature, but to build a time machine, we would need to understand more about those laws and how to subvert them than we do now. And every day, science does learn more. In this film Horizon meets the scientists working on the cutting edge of discovery - men and women who may discover how to build wormholes, manipulate entangled photons or build fully functioning time crystals. In short, these scientists may enable an engineer of the future to do what we have so far been only able to imagine - to build a machine that allows us travel back and forward in time at the touch of a button. It could be you! Science fiction?

Horizon • 2018 • Physics

Einstein's Quantum Riddle

Join scientists as they grab light from across the universe to prove quantum entanglement is real. Einstein called it "spooky action at a distance", but today quantum entanglement is poised to revolutionize technology from computers to cryptography. Physicists have gradually become convinced that the phenomenon two subatomic particles that mirror changes in each other instantaneously over any distance is real. But a few doubts remain. NOVA follows a ground-breaking experiment in the Canary Islands to use quasars at opposite ends of the universe to once and for all settle remaining questions.

NOVA PBS • 2019 • Physics

Gravity and Me: The Force that Shapes Our Lives

Jim Al-Khalili investigates the amazing science of gravity, recreating groundbreaking experiments, including the moment when Galileo first worked out how to measure it. He investigates gravity waves, finds out from astronauts what it's like to live without gravity, sets out to find where in Britain gravity is weakest and so where we weigh the least, and helps design a smartphone app that volunteers use to demonstrate how gravity affects time and makes us age at slightly different rates.

2017 • Physics