Why Isn't "Zero G" the Same as "Zero Gravity"?

Category: Physics
Download:

This Quick Question explains the difference between gravity and g-force, and how you can experience zero-g in space even when it’s not zero gravity!

You might also like

What is the Universe Made Of?

For over a century, physicists have searched for a blueprint of the universe in the form of a single mathematical formula. This ultimate formula would explain the fundamental building blocks of the universe -– the elementary particles and the different forces that govern them. In their quest, physicists dedicated themselves to the pursuit of mathematical beauty but they were to be met with unexpected setbacks. The discovery of the Higgs boson in 2012 at last confirmed the Standard Model –- a culmination of the theories of various physicists that finally seemed to explain what this universe is made of. But is this where the story ends...? Using the latest computer graphics and interviews with Nobel Prize-winning physicists, we look at the fascinating and dramatic story of the search for the ultimate formula.

1/2The Ultimate Formula • 2016 • Physics

Particles and waves: The central mystery of quantum mechanics

One of the most amazing facts in physics is that everything in the universe, from light to electrons to atoms, behaves like both a particle and a wave at the same time. But how did physicists arrive at this mind-boggling conclusion?

TED-EdPhysics

What are you?

So. Are you your body? And if so, how exactly does this work? Lets explore lots of confusing questions.

In a Nutshell • 2016 • Physics

Inside Cern

With exclusive behind-the-scenes access, Horizon follows the highs and lows of an extraordinary story in particle physics. In June 2015, teams at CERN started running the large hadron collider at the highest energy ever. Rumours quickly emerged that they were on the brink of a huge discovery. A mysterious bump in some data suggested a first glimpse of a brand new particle that could change our understanding of how the universe works. A new particle could hint at extra dimensions and help us understand the very beginning of the universe - but first the team has to find it. Horizon follows the scientists as they hunt for the elusive signals that would prove if there is a new particle or if it is just noise from their machine.

Horizon • 2016 • Physics

Hidden Dimensions Exploring Hyperspace

Extra dimensions of space — the idea that we are immersed in hyperspace — may be key to explaining the fundamental nature of the universe. Relativity introduced time as the fourth dimension, and Einstein’s subsequent work envisioned more dimensions still — but ultimately hit a dead end. Modern research has advanced the subject in ways he couldn’t have imagined. John Hockenberry joins Brian Greene, Lawrence Krauss, and other leading thinkers on a visual tour through wondrous spatial realms that may lie beyond the ones we experience.

World Science Festival • 2015 • Physics

Inside Einstein's Mind

On November 25th, 1915, Einstein published his greatest work: general relativity. The theory transformed our understanding of nature’s laws and the entire history of the cosmos, reaching back to the origin of time itself. Now, in celebration of the 100th anniversary of Einstein’s achievement, NOVA tells the inside story of Einstein’s masterpiece. The story begins with the intuitive thought experiments that set Einstein off on his quest and traces the revolution in cosmology that is still playing out in today’s labs and observatories. Discover the simple but powerful ideas at the heart of relativity, illuminating the theory—and Einstein’s brilliance—as never before. From the first spark of an idea to the discovery of the expanding universe, the Big Bang, black holes, and dark energy, NOVA uncovers the inspired insights and brilliant breakthroughs of “the perfect theory.”

NOVA PBS • 2015 • Physics