Beyond the Rainbow • 2015 • episode "3/3" Colour: The Spectrum of Science

Category: Physics
Download:

Helen Czerski ventures beyond the visible spectrum in the final (and best) episode in this vibrant little series, showing how electromagnetic radiation is so much broader than the narrow slice of reality we see with our eyes. Before delving into the details of UV, infrared and x-rays, Dr Czerski explores colour subjectivity by trying on a dress that recently divided the internet — to some it appeared blue and black, to others white and gold. It's a perfect fit. It's also a neat analogy of how people can have opposing views but both swear blind that their perspective is correct. The series ends with some amazing imaging techniques that show our bodies in a whole new light.

Colour: The Spectrum of Science • 2015 • 3 episodes •

Colours Of Earth

In the first episode, Helen seeks out the colours that turned planet Earth multicoloured. To investigate the essence of sunlight Helen travels to California to visit the largest solar telescope in the world. She discovers how the most vivid blue is formed from sulfur atoms deep within the Earth's crust and why the presence of red ochre is a key sign of life. In gold, she discovers why this most precious of metals shouldn't even exist on the surface of the planet and in white, Helen travels to one of the hottest places on Earth to explore the role salt and water played in shaping planet Earth.

2015 • Physics

Colours of Life

Early Earth was a canvas for the vast new palette of the colours of life, with the diversity of human skin tones telling the story of how humanity spread and ultimately conquered the planet. Dr Helen Czerski explores the true masters of colour - which are often the smallest and most elusive - travelling to the mountains of Tennessee to witness the colourful mating display of fireflies, and revealing the marine creatures that can change the colour of their skin in order to hide from the world.

2015 • Physics

Beyond the Rainbow

Helen Czerski ventures beyond the visible spectrum in the final (and best) episode in this vibrant little series, showing how electromagnetic radiation is so much broader than the narrow slice of reality we see with our eyes. Before delving into the details of UV, infrared and x-rays, Dr Czerski explores colour subjectivity by trying on a dress that recently divided the internet — to some it appeared blue and black, to others white and gold. It's a perfect fit. It's also a neat analogy of how people can have opposing views but both swear blind that their perspective is correct. The series ends with some amazing imaging techniques that show our bodies in a whole new light.

2015 • Physics

You might also like

Race for Absolute Zero

This two-part scientific detective tale tells the story of a remarkable group of pioneers who wanted to reach the ultimate extreme: absolute zero, a place so cold that the physical world as we know it doesn't exist, electricity flows without resistance, fluids defy gravity and the speed of light can be reduced to 38 miles per hour. Each film features a strange cast of eccentric characters, including: Clarence Birds Eye; Frederic 'Ice King' Tudor, who founded an empire harvesting ice; and James Dewar, who almost drove himself crazy by trying to liquefy hydrogen. Absolute zero became the Holy Grail of temperature physicists and is considered the gateway to many new technologies, such as nano-construction, neurological networks and quantum computing. The possibilities, it seems, are limitless. Part 2: Race for Absolute Zero Focuses on the fierce rivalry that took place in the laboratories in Britain, Holland, France and Poland as they sought the ultimate extreme of cold. The program will follow the extraordinary discoveries of superconductivity and superfluidity and the attempt to produce a new form of matter that Albert Einstein predicted would exist within a few billionths of degrees above absolute zero.

2/2Absolute Zero • 2007 • Physics

Revelations and Revolutions

How we finally came to understand the science of electricity.

3/3Shock and Awe: The Story of ElectricityPhysics

The fundamentals of space-time (Part 2)

Light always travels at a speed of 299,792,458 meters per second. But if you're in motion too, you're going to perceive it as traveling even faster -- which isn't possible! In this second installment of a three-part series on space-time, CERN scientists Andrew Pontzen and Tom Whyntie use a space-time diagram to analyze the sometimes confounding motion of light.

TED-EdPhysics

Big Trouble

Hannah starts her journey by asking whether everything could be bigger, finding out what life would be like on a bigger planet. As the Earth grows to outlandish proportions, gravity is the biggest challenge, and lying down becomes the new standing up. Flying in a Typhoon fighter jet with RAF flight lieutenant Mark Long, the programme discovers how higher G-force affects the human body, and how people could adapt to a high G-force world. But by the time Earth gets to the size of Jupiter, it's all over, as the moon would impact the planet and end life as we know it. Next, Hannah tries to make living things bigger. The programme examines the gigantopithecus, the biggest ape to ever exist, creates a dog the size of a dinosaur and meets Sultan Kosen, the world's tallest man. Humans are then super-sized with the help of Professor Dean Falk to see what a human body would look like if we were 15m tall. The sun gets expanded, and Professor Volker Bromm looks back in time to find the largest stars that ever existed, before the sun explodes in perhaps the biggest explosion since the big bang.

1/2Size Matters with Hannah Fry • 2018 • Physics

What is the Heisenberg Uncertainty Principle?

The Heisenberg Uncertainty Principle states that you can never simultaneously know the exact position and the exact speed of an object.

TED-EdPhysics

Secrets of the Super Elements

Forget oil, coal and gas - a new set of materials is shaping our world and they're so bizarre they may as well be alien technology. In the first BBC documentary to be filmed entirely on smartphones, materials scientist Prof Mark Miodownik reveals the super elements that underpin our high-tech world. We have become utterly dependent on them, but they are rare and they're already running out. The stuff that makes our smartphones work could be gone in a decade and our ability to feed the world depends mostly on a mineral found in just one country. Mark reveals the magical properties of these extraordinary materials and finds out what we can do to save them.

2017 • Physics