Revelations and Revolutions • episode "3/3" Shock and Awe: The Story of Electricity

Category: Physics

How we finally came to understand the science of electricity.

Shock and Awe: The Story of Electricity • 0 • 1 episodes •

Revelations and Revolutions

How we finally came to understand the science of electricity.


You might also like

Making Sound

At the Palace of Westminster, Helen teams up with scientists from the University of Leicester to carry out state-of-the-art measurements using lasers to reveal how the most famous bell in the world - Big Ben - vibrates to create pressure waves in the air at particular frequencies. This is how Big Ben produces its distinct sound. It's the first time that these laser measurements have been done on Big Ben. At the summit of Stromboli, one of Europe's most active volcanoes, Helen and volcanologist Dr Jeffrey Johnson use a special microphone to record the extraordinary deep tone produced by the volcano as it explodes. Finally, at the University of Cambridge's Institute of Astronomy, Helen meets a scientist who has discovered evidence of sound waves in space, created by a giant black hole. These sounds are one million billion times lower than the limit of human hearing

2017 • Sound Waves: The Symphony of PhysicsPhysics

Mass and Moles

Deep underground in a vault beneath Paris lives the most important lump of metal in the world - Le Grand K. Created in the 19th century, it's the world's master kilogramme, the weight on which every other weight is based. But there is a problem with Le Grand K - it is losing weight. Professor Marcus du Sautoy explores the history of this strange object and the astonishing modern day race to replace it.

2013 • Precision: The Measure of All ThingsPhysics

The Higgs Field, explained

One of the most significant scientific discoveries of the early 21st century is surely the Higgs boson, but the boson and the Higgs Field that allows for that magic particle are extremely difficult to grasp. Don Lincoln outlines an analogy (originally conceived by David Miller) that all of us can appreciate, starring a large dinner party, a raucous group of physicists, and Peter Higgs himself.


When Did Time Begin

We float along the river of time. But does that river have a source? Where did time come from? Some believe time and space are one thing, and the Big Bang started the cosmic clock. Others believe the universe existed for almost half a million "years" before light could move and time began. Still others say time is older than our universe. But what if time itself is an illusion? Incredible new experiments may hold the answer. One groundbreaking experiment gives us the power to punch holes in time…and another may create a machine that operates outside time’s boundaries!

Through the WormholePhysics

Dancing in the Dark: The End of Physics?

Scientists genuinely don't know what most of our universe is made of. The atoms we're made from only make up four per cent. The rest is dark matter and dark energy (for 'dark', read 'don't know'). The Large Hadron Collider at CERN has been upgraded. When it's switched on in March 2015, its collisions will have twice the energy they did before. The hope is that scientists will discover the identity of dark matter in the debris. The stakes are high - because if dark matter fails to show itself, it might mean that physics itself needs a rethink.


Beyond the Rainbow

Helen Czerski ventures beyond the visible spectrum in the final (and best) episode in this vibrant little series, showing how electromagnetic radiation is so much broader than the narrow slice of reality we see with our eyes. Before delving into the details of UV, infrared and x-rays, Dr Czerski explores colour subjectivity by trying on a dress that recently divided the internet — to some it appeared blue and black, to others white and gold. It's a perfect fit. It's also a neat analogy of how people can have opposing views but both swear blind that their perspective is correct. The series ends with some amazing imaging techniques that show our bodies in a whole new light.

2015 • Colour: The Spectrum of SciencePhysics