Unruly Elements (1859-1902) • 2015 • episode "Part 2" The Mystery of Matter: Search for the Elements

Category: Physics
Share:
Download:

Over a single weekend in 1869, a young Russian chemistry professor named Dmitri Mendeleev invents the Periodic Table, bringing order to the growing gaggle of elements. But this sense of order is shattered when a Polish graduate student named Marie Sklodowska Curie discovers radioactivity, revealing that elements can change identities — and that atoms must have undiscovered parts inside them.

The Mystery of Matter: Search for the Elements • 0 • 3 episodes •

Out of Thin Air (1754-1806)

One of science’s great odd couples — British minister Joseph Priestley and French tax administrator Antoine Lavoisier — together discover a fantastic new gas called oxygen, overturning the reigning theory of chemistry and triggering a worldwide search for new elements. Soon caught up in the hunt is science’s first great showman, a precocious British chemist named Humphry Davy, who dazzles London audiences with his lectures, introduces them to laughing gas and turns the battery into a powerful tool in the search for new elements.

2015 • Physics

Unruly Elements (1859-1902)

Over a single weekend in 1869, a young Russian chemistry professor named Dmitri Mendeleev invents the Periodic Table, bringing order to the growing gaggle of elements. But this sense of order is shattered when a Polish graduate student named Marie Sklodowska Curie discovers radioactivity, revealing that elements can change identities — and that atoms must have undiscovered parts inside them.

2015 • Physics

Into the Atom

Caught up in the race to discover the atom’s internal parts — and learn how they fit together — a young British physicist, Harry Moseley, uses newly discovered X-rays to put the Periodic Table in a whole new light. And a young American chemist named Glenn Seaborg creates a new element — plutonium — that changes the world forever, unleashing a force of unimaginable destructive power: the atomic bomb.

2015 • Physics

You might also like

Why Isn't "Zero G" the Same as "Zero Gravity"?

This Quick Question explains the difference between gravity and g-force, and how you can experience zero-g in space even when it’s not zero gravity!

Physics

Aftershock: The Hunt for Gravitational Waves

Horizon travels to the South Pole to tell the inside story of the greatest scientific quest of our time. In March 2014, a team of astronomers stunned the scientific world when they announced that their BICEP2 telescope at the South Pole had possibly detected a signal of “gravitational waves” from the early universe. This is the inside story of the hunt for gravitational waves from the beginning of time.

HorizonPhysics

James Clerk Maxwell: The Man Who Changed the World

Professor Iain Stewart reveals the story behind the Scottish physicist who was Einstein's hero; James Clerk Maxwell. Maxwell's discoveries not only inspired Einstein, but they helped shape our modern world - allowing the development of radio, TV, mobile phones and much more. Despite this, he is largely unknown in his native land of Scotland. On the 150th anniversary of Maxwell's great equations, scientist Iain Stewart sets out to change that, and to celebrate the life, work and legacy of the man dubbed 'Scotland's Forgotten Einstein'.

2015 • Physics

Particles and waves: The central mystery of quantum mechanics

One of the most amazing facts in physics is that everything in the universe, from light to electrons to atoms, behaves like both a particle and a wave at the same time. But how did physicists arrive at this mind-boggling conclusion?

TED-EdPhysics

The Higgs Field, explained

One of the most significant scientific discoveries of the early 21st century is surely the Higgs boson, but the boson and the Higgs Field that allows for that magic particle are extremely difficult to grasp. Don Lincoln outlines an analogy (originally conceived by David Miller) that all of us can appreciate, starring a large dinner party, a raucous group of physicists, and Peter Higgs himself.

TED-EdPhysics

What can Schrödinger's cat teach us about quantum mechanics?

The classical physics that we encounter in our everyday, macroscopic world is very different from the quantum physics that governs systems on a much smaller scale (like atoms).

TED-EdPhysics