Speed Limits • episode "1/3" Richard Hammond's Invisible Worlds

Category: Physics

Using high-speed cameras, Richard reveals the world hidden in the time it takes to blink.

Richard Hammond's Invisible Worlds • 0 • 3 episodes •

Out of Sight

Using new imaging technology, Richard Hammond journeys beyond the visible spectrum.


Speed Limits

Using high-speed cameras, Richard reveals the world hidden in the time it takes to blink.


Off the Scale

Richard Hammond explores the astonishing miniature universe all around us.


You might also like

What is the Heisenberg Uncertainty Principle?

The Heisenberg Uncertainty Principle states that you can never simultaneously know the exact position and the exact speed of an object.


The Mystery of Dark Energy

Horizon looks at dark energy - the mysterious force that is unexpectedly causing the universe's expansion to speed up. The effects of dark energy were discovered in 1998 but physicists still don't know what it is. Worse, its very existence calls into question Albert Einstein's general theory of relativity - the cornerstone of modern physics. The hunt for the identity of dark energy is on. Experiments on earth and in space generate data that might provide a clue, but there are also hopes that another Einstein might emerge - someone who can write a new theory explaining the mystery of the dark energy.

Horizon • 2016 • Physics

Einstein's Quantum Riddle

Join scientists as they grab light from across the universe to prove quantum entanglement is real. Einstein called it "spooky action at a distance", but today quantum entanglement is poised to revolutionize technology from computers to cryptography. Physicists have gradually become convinced that the phenomenon two subatomic particles that mirror changes in each other instantaneously over any distance is real. But a few doubts remain. NOVA follows a ground-breaking experiment in the Canary Islands to use quasars at opposite ends of the universe to once and for all settle remaining questions.

NOVA PBS • 2019 • Physics

That Shrinking Feeling

Hannah is going the other way by asking whether everything could, in fact, be smaller. But going smaller turns out not to be much safer... First, we shrink the Earth to half its size - it starts well with lower gravity enabling us to do incredible acrobatics, but things gradually turn nasty as everyone gets altitude sickness - even at sea level. Then we visit Professor Daniel Lathrop's incredible laboratory, where he has built a model Earth that allows us to investigate the other effects of shrinking the planet to half size. The results aren't good - with a weaker magnetic field we would lose our atmosphere and eventually become a barren, lifeless rock like Mars. In our next thought experiment, we shrink people to find out what life is like if you are just 5mm tall. We find out why small creatures have superpowers that seem to defy the laws of physics, meet Jyoti Amge, the world's smallest woman, and with the help of Dr Diana Van Heemst and thousands of baseball players reveal why short people have longer lives. Lastly, the Sun gets as small as a sun can be. We visit the fusion reactor at the Joint European Torus to find out why stars have to be a minimum size or fusion won't happen. And if our Sun were that small? Plants would turn from green to black, and Earth would probably resemble a giant, frozen eyeball. Which all goes to show that size really does matter.

2/2Size Matters • 2018 • Physics

The Story of Information

Professor Jim Al-Khalili discovers the intriguing story of how we discovered the rules that drive the universe. (Part 2: The Story of Information) Professor Jim Al-Khalili investigates one of the most important concepts in the world today - information. He discovers how we harnessed the power of symbols, everything from the first alphabet to the electric telegraph through to the modern digital age. But on this journey he learns that information isn't just about human communication, it's woven very profoundly into the fabric of reality.

2/2Order and Disorder • 2012 • Physics

Dancing in the Dark: The End of Physics?

Scientists genuinely don't know what most of our universe is made of. The atoms we're made from only make up four per cent. The rest is dark matter and dark energy (for 'dark', read 'don't know'). The Large Hadron Collider at CERN has been upgraded. When it's switched on in March 2015, its collisions will have twice the energy they did before. The hope is that scientists will discover the identity of dark matter in the debris. The stakes are high - because if dark matter fails to show itself, it might mean that physics itself needs a rethink.