If you get the To continue watching press "Allow" just wait a few seconds and close the popup from the "X"

That Shrinking Feeling • 2018 • episode "2/2" Size Matters with Hannah Fry

Category: Physics
Download:

Hannah is going the other way by asking whether everything could, in fact, be smaller. But going smaller turns out not to be much safer... First, we shrink the Earth to half its size - it starts well with lower gravity enabling us to do incredible acrobatics, but things gradually turn nasty as everyone gets altitude sickness - even at sea level. Then we visit Professor Daniel Lathrop's incredible laboratory, where he has built a model Earth that allows us to investigate the other effects of shrinking the planet to half size. The results aren't good - with a weaker magnetic field we would lose our atmosphere and eventually become a barren, lifeless rock like Mars. In our next thought experiment, we shrink people to find out what life is like if you are just 5mm tall. We find out why small creatures have superpowers that seem to defy the laws of physics, meet Jyoti Amge, the world's smallest woman, and with the help of Dr Diana Van Heemst and thousands of baseball players reveal why short people have longer lives. Lastly, the Sun gets as small as a sun can be. We visit the fusion reactor at the Joint European Torus to find out why stars have to be a minimum size or fusion won't happen. And if our Sun were that small? Plants would turn from green to black, and Earth would probably resemble a giant, frozen eyeball. Which all goes to show that size really does matter.

Size Matters with Hannah Fry • 2018 • 2 episodes •

Big Trouble

Hannah starts her journey by asking whether everything could be bigger, finding out what life would be like on a bigger planet. As the Earth grows to outlandish proportions, gravity is the biggest challenge, and lying down becomes the new standing up. Flying in a Typhoon fighter jet with RAF flight lieutenant Mark Long, the programme discovers how higher G-force affects the human body, and how people could adapt to a high G-force world. But by the time Earth gets to the size of Jupiter, it's all over, as the moon would impact the planet and end life as we know it. Next, Hannah tries to make living things bigger. The programme examines the gigantopithecus, the biggest ape to ever exist, creates a dog the size of a dinosaur and meets Sultan Kosen, the world's tallest man. Humans are then super-sized with the help of Professor Dean Falk to see what a human body would look like if we were 15m tall. The sun gets expanded, and Professor Volker Bromm looks back in time to find the largest stars that ever existed, before the sun explodes in perhaps the biggest explosion since the big bang.

2018 • Physics

That Shrinking Feeling

Hannah is going the other way by asking whether everything could, in fact, be smaller. But going smaller turns out not to be much safer... First, we shrink the Earth to half its size - it starts well with lower gravity enabling us to do incredible acrobatics, but things gradually turn nasty as everyone gets altitude sickness - even at sea level. Then we visit Professor Daniel Lathrop's incredible laboratory, where he has built a model Earth that allows us to investigate the other effects of shrinking the planet to half size. The results aren't good - with a weaker magnetic field we would lose our atmosphere and eventually become a barren, lifeless rock like Mars. In our next thought experiment, we shrink people to find out what life is like if you are just 5mm tall. We find out why small creatures have superpowers that seem to defy the laws of physics, meet Jyoti Amge, the world's smallest woman, and with the help of Dr Diana Van Heemst and thousands of baseball players reveal why short people have longer lives. Lastly, the Sun gets as small as a sun can be. We visit the fusion reactor at the Joint European Torus to find out why stars have to be a minimum size or fusion won't happen. And if our Sun were that small? Plants would turn from green to black, and Earth would probably resemble a giant, frozen eyeball. Which all goes to show that size really does matter.

2018 • Physics

You might also like

How to Become Invisible

A cloak of invisibility isn't just some Harry Potter fantasy- Dr. Michio Kaku draws up the blueprints for a real invisibility cloak and reveals that vanishing into thin air could be much closer than we think.

S1E5Physics of the Impossible • 2009 • Physics

Project Greenglow: The Quest for Gravity Control

The story of an extraordinary scientific adventure - the attempt to control gravity. For centuries, the precise workings of gravity have confounded the greatest scientific minds, and the idea of controlling gravity has been seen as little more than a fanciful dream. Yet in the mid 1990s, UK defence manufacturer BAE Systems began a groundbreaking project code-named Greenglow, which set about turning science fiction into reality. On the other side of the Atlantic, Nasa was simultaneously running its own Breakthrough Propulsion Physics Project. It was concerned with potential space applications of new physics, including concepts like 'faster-than-light travel' and 'warp drives'. Horizon explores science's long-standing obsession with the idea of gravity control. It looks at recent breakthroughs in the search for loopholes in conventional physics and examines how the groundwork carried out by Project Greenglow has helped change our understanding of the universe.

Horizon • 2016 • Physics

What is the Heisenberg Uncertainty Principle?

The Heisenberg Uncertainty Principle states that you can never simultaneously know the exact position and the exact speed of an object.

TED-EdPhysics

The fundamentals of space-time (Part 2)

Light always travels at a speed of 299,792,458 meters per second. But if you're in motion too, you're going to perceive it as traveling even faster -- which isn't possible! In this second installment of a three-part series on space-time, CERN scientists Andrew Pontzen and Tom Whyntie use a space-time diagram to analyze the sometimes confounding motion of light.

TED-EdPhysics

Let It Snow!

In this extraordinary documentary we are going to witness very different kinds and situations of snowing: from howling blizzards to the gentlest and loveliest of weather events, from huge handkerchiefs quietly falling to the needle-sharp attack of hard, heavy grains. Snow - what is it really? How is it created - naturally and artificially? Thanks to CGI and new camera techniques we can actually see this process for the first time and listen to the incredible, inaudible music of snowfall, of myriads of tiny crystals touching and rolling and settling. Each snowflake is unique and bears more secrets than we could imagine. Did you know that different kinds of music influence the crystallization process and the shape of snowflakes? And have you ever imagined that we would be able to produce artificial snow that melts at 30 degrees Celsius? With this in mind: just let it snow!

2008 • Physics

Parachutes

Meet the innovators who developed newer, safer ways to fall from the sky and those whose lives were saved by them

2/4Survival in the Skies • 2019 • Physics