Making Sound • 2017 • episode "1/2" Sound Waves: The Symphony of Physics

Category: Physics
Download:

At the Palace of Westminster, Helen teams up with scientists from the University of Leicester to carry out state-of-the-art measurements using lasers to reveal how the most famous bell in the world - Big Ben - vibrates to create pressure waves in the air at particular frequencies. This is how Big Ben produces its distinct sound. It's the first time that these laser measurements have been done on Big Ben. At the summit of Stromboli, one of Europe's most active volcanoes, Helen and volcanologist Dr Jeffrey Johnson use a special microphone to record the extraordinary deep tone produced by the volcano as it explodes. Finally, at the University of Cambridge's Institute of Astronomy, Helen meets a scientist who has discovered evidence of sound waves in space, created by a giant black hole. These sounds are one million billion times lower than the limit of human hearing

Sound Waves: The Symphony of Physics • 2017 • 2 episodes •

Making Sound

At the Palace of Westminster, Helen teams up with scientists from the University of Leicester to carry out state-of-the-art measurements using lasers to reveal how the most famous bell in the world - Big Ben - vibrates to create pressure waves in the air at particular frequencies. This is how Big Ben produces its distinct sound. It's the first time that these laser measurements have been done on Big Ben. At the summit of Stromboli, one of Europe's most active volcanoes, Helen and volcanologist Dr Jeffrey Johnson use a special microphone to record the extraordinary deep tone produced by the volcano as it explodes. Finally, at the University of Cambridge's Institute of Astronomy, Helen meets a scientist who has discovered evidence of sound waves in space, created by a giant black hole. These sounds are one million billion times lower than the limit of human hearing

2017 • Physics

Using Sound

Visiting a hidden location buried beneath the hills of Scotland, Helen experiences some of the most extreme acoustics in the world. Here she learns just how much information can be carried by sound. She discovers how sound has driven the evolution of truly incredible biological systems and complex relationships between creatures that exploit sound for hunting - and escaping from predators. Helen demonstrates how sound waves diffract (bend around objects) and in doing so help us sense danger and locate it. Helen explains how we are not limited to passively detecting sound waves; we can also use them to actively probe the world.

2017 • Physics

You might also like

How to Become a Superhero

Imagine turning yourself into a crime fighting super hero just like Batman or Iron man. Dr Michio Kaku designs a suit that would give the wearer the super powers of a comic book super hero. Take that bad guys!

S1E10Physics of the Impossible • 2009 • Physics

Double Slit Experiment

The double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena.

Physics

The Higgs Field, explained

One of the most significant scientific discoveries of the early 21st century is surely the Higgs boson, but the boson and the Higgs Field that allows for that magic particle are extremely difficult to grasp. Don Lincoln outlines an analogy (originally conceived by David Miller) that all of us can appreciate, starring a large dinner party, a raucous group of physicists, and Peter Higgs himself.

TED-EdPhysics

How Small is the Universe?

Horizon plunges down the biggest rabbit-hole in history in search of the smallest thing in the Universe. It is a journey where things don't just become smaller but also a whole lot weirder. Scientists hope to catch a glimpse of miniature black holes, multiple dimensions and even parallel Universes.

HorizonPhysics

Particles Unknown - Neutrinos: Ghosts of the Universe

Outnumbering atoms a billion to one, neutrinos are the universe's most common yet most elusive and baffling particle. NOVA joins an international team of neutrino hunters whose discoveries may change our understanding of how the universe works.

NOVA PBS • 2021 • Physics

The Matter of Antimatter Answering the Cosmic Riddle of Existence

You exist. You shouldn’t. Stars and galaxies and planets exist. They shouldn’t. The nascent universe contained equal parts matter and antimatter that should have instantly obliterated each other, turning the Big Bang into the Big Fizzle. And yet, here we are: flesh, blood, stars, moons, sky. Why? Come join us as we dive deep down the rabbit hole of solving the mystery of the missing antimatter.

World Science Festival • 2018 • Physics